Unpaired data empowers association tests
نویسندگان
چکیده
منابع مشابه
Tests for genetic association using family data.
We use likelihood-based score statistics to test for association between a disease and a diallelic polymorphism, based on data from arbitrary types of nuclear families. The Nonfounder statistic extends the transmission disequilibrium test (TDT) to accommodate affected and unaffected offspring, missing parental genotypes, phenotypes more general than qualitative traits, such as censored survival...
متن کاملGradient Diversity Empowers Distributed Learning
It has been experimentally observed that distributed implementations of mini-batch stochastic gradient descent (SGD) algorithms exhibit speedup saturation and decaying generalization ability beyond a particular batch-size. In this work, we present an analysis hinting that high similarity between concurrently processed gradients may be a cause of this performance degradation. We introduce the no...
متن کاملStatistics review 8: Qualitative data – tests of association
This review introduces methods for investigating relationships between two qualitative (categorical) variables. The chi2 test of association is described, together with the modifications needed for small samples. The test for trend, in which at least one of the variables is ordinal, is also outlined. Risk measurement is discussed. The calculation of confidence intervals for proportions and diff...
متن کاملFamily-Based Association Tests with longitudinal measurements: handling missing data.
Several family-based approaches have been previously proposed to enhance the power for testing genetic association when the traits are measured longitudinally or repeatedly. In this paper, we show that some of these FBAT approaches can be easily extended to accommodate incomplete data and remain unbiased tests. We also show that because of the nature of FBAT approaches, we can impute the missin...
متن کاملFamily-based association tests using genotype data with uncertainty.
Family-based association studies have been widely used to identify association between diseases and genetic markers. It is known that genotyping uncertainty is inherent in both directly genotyped or sequenced DNA variations and imputed data in silico. The uncertainty can lead to genotyping errors and missingness and can negatively impact the power and Type I error rates of family-based associat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2020
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/btaa886